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Abstract: The plasma phase at high temperatures of a strongly coupled gauge theory

can be holographically modelled by an AdS black hole. Matter in the fundamental repre-

sentation and in the quenched approximation is introduced through embedding D7-branes

in the AdS-Schwarzschild background. Low spin mesons correspond to the fluctuations of

the D7-brane world volume. As is well known by now, there are two different kinds of

embeddings, either reaching down to the black hole horizon or staying outside of it. In the

latter case the fluctuations of the D7-brane world volume represent stable low spin mesons.

In the plasma phase we do not expect mesons to be stable but to melt at sufficiently high

temperature. We model the late stages of this meson melting by the quasinormal modes of

D7-brane fluctuations for the embeddings that do reach down to the horizon. The inverse

of the imaginary part of the quasinormal frequency gives the typical relaxation time back

to equilibrium of the meson perturbation in the hot plasma. We briefly comment on the

possible application of our model to quarkonium suppression.
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1. Introduction

The AdS/CFT correspondence [1] allows to model non-Abelian gauge theories in the strong

coupling regime through a dual theory of gravity. The best understood example by far is the

case of N =4 gauge theory and type IIB superstrings on the AdS5 × S5 background. The

N =4 theory is rather special as it possesses exact conformal invariance and therefore stays

in a Coulomb phase even at infinite strong coupling. The conformal symmetry corresponds

to the isometry group of the five-dimensional AdS space. If one considers the gauge theory

at finite temperature, thereby breaking the conformal symmetry, it immediately goes over

into a deconfinement phase. The holographic dual of this deconfinement phase is given by

the anti-de Sitter Schwarzschild black hole, more precisely by the AdS black hole with flat

horizon geometry [2]. This allows to model a non-Abelian gluon plasma (of infinite extent)

at strong coupling.

Recently this has become of increased interest since it turned out that the state of

matter created in heavy-ion collisions at RHIC is most likely described by a strongly coupled

quark-gluon plasma. Since more traditional methods such as finite temperature field theory

or lattice QCD have a hard time to model the dynamics of the quark-gluon plasma at

strong coupling, the AdS/CFT correspondence is a promising alternative to do this. In

fact, several important plasma parameters, most notably the shear viscosity [3] and the

energy loss rate of a heavy quark [4] or the jet quenching parameter using light-like Wilson

loops [5]1 have been calculated with stringy AdS-methods and in general turned out to

be in surprisingly good agreement with experimental data [7]. It is therefore of highest

1Although there is some controversy about the correct prescription, see [6].
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importance to study the physics of the strongly coupled quark-gluon plasma as modelled by

AdS black hole physics and to extend the range of physical processes that can be addressed

in this way.

The spectrum of the N =4 theory contains only particles in the adjoint representation

of the gauge group. This limitation can be overcome by giving the strings a place to end on,

i.e. introducing D-branes. The endpoints of the string represent particles in the fundamen-

tal representation of the gauge group (“quarks”). Fundamental matter is modelled in this

way through the embedding of D7-branes in AdS5 × S5 . So far, this has been achieved only

in a sort of quenched approximation where the number of flavours Nf is much less than the

number of colours Nc.
2 In the AdS context it means that the D7-branes are introduced as

probe branes in the gravity background, ignoring their backreaction onto the geometry [9].

A recent review on adding fundamental matter to the gauge/gravity correspondence can

be found in [10].

Probe branes embedded in black hole geometries have already been studied some time

ago in [11], where it was found that there are two topologically distinct classes of embed-

dings. The first class, named Minkowski embedding, stays everywhere outside the black

hole, whereas the second class, the black hole embedding, reaches down to the horizon such

that the induced geometry on the brane itself is a black hole.

D7-brane embeddings in AdS black hole geometries have first been considered in [12].

Holography relates the asymptotic behaviour at the conformal boundary of the D7-brane to

the quark mass mq and the quark bilinear condensate 〈qq̄ 〉. The two types of embeddings

give rise to a first order phase transition where the value of the quark condensate jumps

by a finite amount. This phase transition has been studied in great detail in [13 – 17]. This

fundamental phase transition has been generalised to other types of backgrounds and D6- or

D8-brane embeddings where there is a chiral U(1) or even a non-Abelian chiral symmetry,

and the quark condensate is an order parameter for chiral symmetry breaking [18, 19].

The model we consider in this paper, IIB sugra on AdS5 × S5 with D7-branes partially

wrapped on the S5, is dual to N = 4 SU(Nc) gauge theory at finite temperature T in the

large Nc limit with one (or few) N =2 hypermultiplets of mass mq in the fundamental rep-

resentation. Because of the conformal symmetry we can either set T or mq to one. Varying

the mass of the quarks is therefore equivalent in this model to varying the temperature,

i.e. lowering the mass is the same as rising the temperature. High values of the mass mq

correspond to Minkowski embeddings and low values to black hole embeddings. Therefore

we can also think of the two kind of embeddings as being at low temperature (Minkowski

embedding) or high temperature (black hole embedding).

Quark anti-quark bound states give rise to mesons. In the holographic dual high spin

mesons are modelled by spinning open strings ending on the probe branes. The decay of

high spin mesons has been studied in [20]. We will be concerned with the decay of low

spin mesons in this paper. Low spin mesons are represented by the small fluctuations

around the equilibrium configuration of the D-brane world volume. The spectrum of the

D-brane fluctuations is very different for the two different classes of embeddings. In the

2See however [8] for recent progress beyond the quenched approximation.
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case of the Minkowski embeddings there is a discrete spectrum of modes with eigenvalues

that can be identified with the meson masses [9, 21]. Technically one imposes Dirichlet

or Neumann boundary conditions for the fluctuations at the endpoints of the embedded

brane. A wave travelling along the brane will then get reflected at the endpoint and this

gives rise to a discrete set of eigenmodes and eigenfrequencies. If the brane embedding is

however such that it touches the horizon, a wave travelling down the brane will eventually

reach the horizon, fall through it and not come back again (see figure 1). In this case

one has to impose purely infalling boundary conditions at the position of the horizon.

These boundary conditions give rise to eigenmodes with complex frequencies, the so-called

quasinormal modes.

Quasinormal modes are damped fluctuations in black hole backgrounds and tradition-

ally have been studied in the context of black holes in asymptotically flat space (see [22]

for a review). In the context of the AdS/CFT correspondence they have been first studied

in [23]. The imaginary part of the quasinormal frequency represents a decay constant.

The dual field theory interpretation is that the inverse of the imaginary part gives the

relaxation time back to equilibrium under a small perturbation of the quark-gluon plasma.

Our interpretation of the quasinormal modes on the branes is as follows: the quasinormal

modes represent the late stages of the melting process of a meson inserted in a plasma at

high temperature. The imaginary part of the frequency

ωquasinormal
n = Ωn − i

Γn

2
, (1.1)

gives the decay constant of the collective mode corresponding to the quasinormal mode in

the plasma.3 In other words: mesons built up of sufficiently light quarks (or equivalently

at sufficiently high temperature) inserted in the plasma will melt just as an icecube melts

in hot water. At a late stage the typical timescales of this melting process is given by the

inverse of the imaginary part of the quasinormal frequencies. We could start for example

with a Minkowski type D7-brane embedding in an excited state with a normal mode fluc-

tuation on it representing a stable meson. If we now increase the temperature slowly the

D7-brane with the normal mode on it will eventually enter the unstable regime and undergo

the phase transition to the black-hole embedding. Since the fluctuation is considered to be

a small perturbation we can assume that the phase transition is basically unchanged from

the one that takes place for the ground state of the D7-brane. After the phase transition

the additional energy present due to the meson perturbation will eventually drop into the

black hole and this decay process is governed by the quasinormal modes. In this way the

quasinormal modes are related to the melting of the meson at high temperature.

The paper is organised as follows: in section 2 we review the physics of the D7-

brane embeddings in the AdS black hole geometry. It also serves to set up our notation

3A holographic interpretation of the quasinormal modes in the case of the planar AdS black hole as

poles in retarded Greens functions has been given in [24]. It also has been pointed out there that these

poles can not be automatically given a quasiparticle interpretation. Our case is slightly different in that we

are considering an N =2 theory with an additional scale (the quark mass). Nevertheless we do not want to

interpret the quasinormal modes as quasiparticles, solely as the collective modes representing the late time

stages of the decay of a (meson)-perturbation inserted in the plasma.
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Dirichlet or von Neumann

D7-End

Horizon
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Figure 1: Waves travelling down a D7-brane towards the interior of an AdS black hole. For

Minkowski embeddings the wave meets the end of the brane and is reflected there. This gives

rise to normal modes and frequencies that are the holographic duals of low spin mesons and their

masses. In the case of the black hole embeddings the wave travels down the brane and through the

horizon and simply never comes back. The fluctuation has to obey infalling boundary conditions

giving rise to quasinormal modes!

and conventions.

In section 3 we first compute the quasinormal modes for the trivial embedding. This is

the embedding that corresponds to massless quarks in the dual field theory. The differential

equation that the fluctuations obey is a Heun equation. This type of equation has appeared

already several times before in the study of quasinormal modes. We adopt the method of

continued fractions as pioneered by [25] and applied in the AdS context in [26]. The method

converges very fast and allows for a quick calculation of the first low-lying quasinormal

modes. We present the results for the first ten quasinormal frequencies. Then we go over

to brane embeddings that correspond to massive quarks. The branes are bent for these

embeddings and the embedding itself can be calculated only through numerical integration

of a highly non-linear differential equation. This makes the calculation of the quasinormal

modes around these embeddings much more difficult. We employ two strategies. First we

approximate the numerical embedding by an ansatz that is introduced in the differential

equation of the fluctuations. We solve the equations at the boundary and at the horizon

using series expansions with the right asymptotics. We use the horizon series to give initial

values close to the horizon and integrate numerically towards the boundary. We then

match the numerical solutions with the boundary series at a point close to the boundary

and demand that the resulting solution is smooth. This fixes the quasinormal frequency.

We were able to find the three lowest quasinormal modes for a number of brane embeddings

up to masses that actually lie already above the critical mass, where the phase transition

– 4 –
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to the Minkowski embeddings occurs.

We also employed a second method to find the quasinormal modes. This second method

consists in converting the differential equation into a finite difference equation. In this ap-

proach one imposes the correct boundary conditions at the endpoints and uses an ansatz

solution that is fed into the finite difference equation. An improvement to the ansatz so-

lution y can be computed by demanding that y + ∆y fulfils the finite difference equations

to first order, in an expansion in the correction ∆y. This gives a new ansatz solution

and therefore it amounts to a recursive algorithm that eventually relaxes to the correct

quasinormal mode and frequency within a given accuracy goal. We describe this relaxation

method in more detail in the appendix. In praxis, it turned out that the relaxation method

worked well only for the lowest quasinormal mode. The agreement of the quasinormal fre-

quencies as computed with the relaxation method or with the midpoint shooting algorithm

is however excellent and typically of the order of

∣

∣ωshoot − ωrelax
∣

∣

|ωshoot + ωrelax| ≈ 10−4 . (1.2)

We are therefore confident that the quasinormal frequencies are accurate up to the quoted

uncertainty. In this paper we will state only the results from the midpoint shooting method.

In section 4 we briefly discuss the masses of the mesons that are represented by the

fluctuations around the Minkowski embeddings. Finally, in section 5 we sum up our con-

clusions and give an outlook to possible further applications of our holographic picture of

meson melting to the physics of the quark-gluon plasma.

2. D7-brane embeddings

The ten-dimensional geometry is given by the direct product of the five-dimensional flat

AdS black hole times a five sphere

ds2 = − 1

R2

(

r2 − r4
H

r2

)

dt2 + R2 dr2

r2 − r4

H

r2

+
r2

R2
d~x2 + R2 dΩ5

2 . (2.1)

The AdS5 × S5 radius is related to the ’t Hooft coupling of the dual gauge theory through

R4 = g2
YMNc(α

′)2 = λ(α′)2. The Hawking temperature is given by the horizon radius of

the black hole rH =
√

λα′π T and it is the temperature of the dual field theory.

As said in the introduction, there are two qualitatively different embeddings of the

D7-brane in this AdS-Schwarzschild geometry. At large mq/(
√

λT ), with mq the quark

mass, the tension of the D7-brane pulls enough to maintain itself outside of the black hole,

ending at a finite value r0 > rH of the radial coordinate. This is the so-called Minkowski

embedding. On the contrary, for small mq/(
√

λT ) the brane is forced to fall through the

horizon thus inheriting the black hole structure. In this case one calls it the black hole

embedding. The conformal symmetry of the underlying AdS space can be used to set

rH to one. We will do this implicitly in the following by using the coordinate z = rH/r

and rescaling spacetime coordinates rH

R2 (t, ~x) = T (t, ~x) → (t, ~x). Aside from an overall R2

– 5 –
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factor, the line element is then

ds2 =
1

z2

(

−(1 − z4)dt2 +
dz2

1 − z4
+ d~x2

)

+ dΩ 2
5 , (2.2)

which has the horizon sitting at z = 1. We further write the S5 element as

dΩ 2
5 = dθ2 + sin2 θ dψ2 + cos2 θ dΩ 2

3 , (2.3)

where θ and ψ parametrise the transverse directions to the brane.

The D7 wraps all of AdS5 (either down to the horizon or not) and the S3 inside the

S5. Its action is the DBI action

SD7 = TD7

∫

d8ξ
√

− det P[G] , (2.4)

with P[G] the pullback of the bulk metric G onto the brane. The profile of the embed-

ding is characterised by its shape in the transverse coordinates. We will consider embed-

dings that have a simple profile characterised by the dependence of the S3 radius on the

AdS5 × S5 radial direction (θ(z), ψ = const.). Absorbing the tension and volume of the S3

into the normalisation, the action is

SD7 =

∫

dz
cos3 θ(z)

z5

√

1 + z2(1 − z4) θ′(z)2 . (2.5)

The embedding is obtained by solving the equation of motion for θ(z), which after

some simplifications is

0 = 3 sin θ(z)
[

− 1 + z2 (−1 + z4) θ′(z)2
]

(2.6)

+z cos θ(z)
[

(3 + z4) θ′(z) + 2z2 (1 − z4) (2 − z4) θ′(z)3 + z(−1 + z4) θ′′(z)
]

.

For the Minkowski embedding one demands the brane to end outside the black hole, so the

S3 has to shrink to zero size at z0. Therefore one imposes θ(z0) = π/2. The second bound-

ary condition comes from the requirement of a smooth ending without conical deficit. This

imposes that θ′(z0) → ∞ which we simulate in the numerical integration of (2.6) by setting

the derivative to 104. In the black hole case, one sets the angle to some value θ(1) = θ0

at the horizon z = 1, whereas the second boundary condition is θ′(1) = (3/4) tan θ0. This

can be seen by demanding the embedding to be smooth at the horizon.4 Figure 2 shows

the two embeddings for different values of the boundary conditions.

The solid curve in figure 2 represents the critical embedding which is associated to the

fundamental phase transition of the theory. In order to compute the critical embedding one

needs to compute separately the free energy of the Minkowski and black hole embeddings

which correspond to the same quark mass, given by the derivative at the boundary. These

free energies need to be renormalised,5 where a holographic renormalization scheme may

4This boundary condition translates to Neumann boundary conditions when Fefferman-Graham coordi-

nates are used as in [17].
5One introduces an effective cutoff integrating down to z = ǫ ∼ 0, and later renormalises ǫ → 0.

– 6 –
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Figure 2: Minkowski (thin and thick dot-dashed) and black hole (dashed) D7-brane embeddings.

We have also plotted the critical embedding (solid).

be used [27 – 29]. For this particular setup this was done in [30]. The critical embedding

corresponds to the configuration where the difference of free energies changes sign, with

the free energy for the embedding given by the action (2.5), and with a discontinuity jump

of the quark condensate.

The asymptotic expansion of the embedding

θ(z) = Θ0 z + Θ2 z3 + O(z5) + . . . , (2.7)

allows to obtain the quark mass

mq =
1

2
Θ0

√
λT ≡ Θ0 ∆m(T ) , (2.8)

where we introduce the thermal rest mass factor ∆m(T ) = 1
2

√
λT , and also the condensate

through [17]6

〈qq̄ 〉
π2T 2∆m(T )

= lim
ǫ→0

1

ǫ3

√

− det P[G]
∣

∣

∣

z=ǫ

δSreg.

δ θ(ǫ)
= −4Θ2 +

2

3
(Θ0)

3 . (2.9)

This computation has been done in a variety of papers [12, 13, 15]. The value of the quark

mass for the critical embedding is mcrit. ≈ 0.92∆m(T ). The physical situation corresponds

to a discontinuous jump from a black hole embedding to a Minkowski embedding. It

was also studied recently in [17] in the case of a curved boundary S1 × S3, where the

deconfinement transition of the dual gauge theory was also analysed with similar results.

6We have used a definition of the mass that differs by a factor
√

2 from the one given in [17].
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3. Quasinormal modes

In a black hole geometry there is a class of time-dependent fluctuations that behave as

damped oscillations. They are called quasinormal modes to point out the difference with

normal modes, that are non-damped oscillations. Quasinormal modes can be seen as

excitations that dissipate their energy into the horizon or spreading it to infinity. In case

we have an asymptotic AdS geometry all the energy is dissipated into the horizon, since

the AdS curvature acts effectively as a box.

In the context of the AdS/CFT correspondence, a big black hole in AdS would corre-

spond to a high-temperature plasma phase of the gauge theory. Properties of this plasma

can be studied using correlation functions in the black hole background, and among other

interesting results it is shown that the viscosity is non-zero, saturating a conjectured lower

bound for the N = 4 theory [3]. Therefore, thermal fluctuations of the plasma will be

damped so it is natural to identify them with quasinormal modes of the black hole [23, 31 –

34].

According to AdS/CFT, the black hole geometry corresponds to a strongly interacting

quark-gluon plasma. From the point of view of mesons, there has been a deconfinement

phase transition so they no longer provide a good description of fundamental degrees of

freedom. Still, we could introduce a meson in the plasma and it will have a finite lifetime.

The usual prescription to identify the meson spectrum in the dual gravitational theory

is to impose normalizable conditions at the boundary and regular conditions at the black

hole horizon. The spectrum turns out to be real and continous, so the associated two-point

correlation functions will show a branch cut along the real axis pointing at the deconfine-

ment of mesons. In [34] it was proposed to define the retarded Green function in terms of

the quasinormal spectrum. Then, frequencies vanishing with the spatial momentum will

correspond to wide and slow fluctuations thus describing the hydrodynamical properties of

the plasma. Other quasinormal modes will also describe dissipation processes. In principle,

quasinormal modes could describe unstable bound states of quarks in the plasma, with the

same quantum numbers as the low temperature analog mesons and a finite lifetime. This

will be true if distinct resonances appear in the spectral function, with a small enough

width and an appropriate dispersion relation ω(~q) so they can be interpreted as quasipar-

ticles. In [24] it is shown that in N = 4 plasma the quasinormal poles actually do not

lead to resonances and that the high frequency behaviour is dominated by the underlying

conformal symmetry. The case studied here is slightly different because for non-zero quark

mass, the theory is already non-conformal and the structure of mesonic Green functions

is given by an infinite set of discrete poles localized on the real axis, that we can identify

with the stable spectrum of mesons. Also the fact that the plasma is strongly coupled for

quarks and gluons does not affect mesons, because their interactions decrease at least as

∼ 1/N in the large N limit, so from their point of view the plasma is a weakly coupled

gas. This is confirmed by the zero drag force computed for mesons [20].

However, the relation between hypothetical bound states in the plasma and the actual

mesons in the low temperature phase is not completely clear, since the wavefunction of a

meson entering the plasma will probaly suffer strong non-linear effects before diluting. On

– 8 –
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the other hand, if we consider a single meson or a small number, the process of melting

can be seen as a small fluctuation losing energy into the plasma and should be described

by quasinormal modes.7

In general, the problem of finding the quasinormal modes can be reduced to a quantum

mechanical problem of scattering in a one-dimensional potential, see [22] for reviews on

quasinormal modes. In asymptotically flat spaces the potential vanishes both at infinity

and at the horizon, so the solutions are in general a superposition of ingoing and outgoing

waves. Quasinormal modes are defined imposing outgoing boundary conditions at infinity

and infalling (ingoing) boundary conditions at the horizon. These conditions are quite

restrictive and can be satisfied only by a discrete set of complex frequencies. In spaces

that are asymptotically AdS the situation is similar at the horizon, but the potential does

not vanish at infinity and a different set of boundary conditions should be considered. The

usual choice is Dirichlet boundary conditions, although there could be other possibilities.

In particular, for gravitational perturbations Neumann or Robin boundary conditions can

also be considered [32].

In the case that interests us, we introduce a set of D7 probes in an AdS5 × S5 black

hole geometry. The fields living on the branes are gauge fields and two scalar fields θ and

ψ, parameterising the directions transverse to the brane. According to the correspondence,

we can associate them to meson operators in the dual theory. From now on, we will be

interested only in fluctuations of θ, a scalar of mass squared m2 = −3, that in the dual

theory maps to a meson operator of dimension ∆ = 3, a quark bilinear. The normalizable

modes of this field should correspond to scalar meson states in the dual theory.

From the two possible situations, let us consider D7-brane embeddings that fall into

the black hole. Then, the induced metric on the branes has a horizon and there will be

quasinormal modes in the spectrum of fluctuations of the brane. Since the black hole

brane configuration corresponds to a deconfined situation for quarks, the meson spectrum

associated to normal modes will be continuous [16, 18].

For simplicity, we will consider only singlet states on S3, and since we are interested only

in the mass and decay width, we will consider space-independent perturbations. However,

it could be an interesting issue to see the effect of non-zero momentum with respect to the

plasma rest frame on bound states. On general grounds, we expect that the states will be

more stable.

Let us write the coordinate θ as θ(z, t) = θ0(z) + ϑ(z, t), that is, embedding plus

fluctuations over it. The action for the fluctuations is the DBI action of the brane

SD7 ≃
∫

dt dz
cos3 (θ0(z) + ϑ)

z5

√

1 − z2

1 − z4
(∂tϑ)2 + z2(1 − z4)(θ′0(z) + ∂zϑ)2 . (3.1)

If we consider small fluctuations, we can use the linearised equations of motion. Using

ϑ(z, t) = e−iωtϑ(z), we are left with a second-order differential equation in z

ϑ′′(z) + A1(z)ϑ′(z) + (B(z)2 ω2 + A0(z))ϑ(z) = 0 , (3.2)

7Remember that we are considering low spin mesons only.
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where using

s(z) = 1 + z2(1 − z4) θ′0(z)2 , (3.3)

the coefficients of the differential equation are

B(z) =
√

s(z) (1 − z4)−1 , (3.4)

A0(z) = s(z)
3 sec2 θ0(z)

z2(1 − z4)
, (3.5)

A1(z) = − 3 + z4

z(1 − z4)
+ 6θ′0(z)

(

tan θ0(z) − z(2 − z4)θ′0(z)
)

, (3.6)

where we have used the equations of motion of the embedding (2.6) to eliminate θ′′0(z).

Notice that if ϑ(z) is a solution for some frequency ω = ωR − iωI, then ϑ∗(z) is also a

solution for a frequency ω′ = −ω∗ = −ωR − iωI. This Z2 symmetry allows to form real

combinations of quasinormal modes, that will be true geometric deformations of the brane.

Close to the boundary of AdS (z → 0+), the differential equation is approximately

ϑ′′(z) − 3

z
ϑ′(z) +

3

z2
ϑ(z) = 0 , (3.7)

with solutions ϑ(z) ∼ a z + b z3. According to the dictionary of the correspondence, we

should set a = 0 in order to study the spectrum of states. Otherwise, we will be introducing

couplings for meson operators in the Lagrangian. Notice that the behaviour is universal

for any embedding and frequency ω.

Close to the horizon (z → 1−), the differential equation becomes

ϑ′′(z) +
1

z − 1
ϑ′(z) +

ω2

16(z − 1)2
ϑ(z) = 0 , (3.8)

with solutions ϑ(z) ∼ a′(1 − z)iω/4 + b′(1 − z)−iω/4. In this case, we will impose ingoing

boundary conditions a′ = 0. The asymptotic behaviour is also universal for any embedding.

Equation (3.2) can be transformed into a Schrödinger equation, useful to derive analytic

properties of the frequencies [35]. Using ϑ(z) = σ(z)f(z) with

σ′(z)

σ(z)
= −1

2

(

A1(z) +
B′(z)

B(z)

)

, (3.9)

the equation for quasinormal modes is

(

1

B(z)

d

dz

(

1

B(z)

d

dz

)

+ ω2 − V (z)

)

f(z) = 0 , (3.10)

so the Schrödinger equation is recovered after changing variables to the ‘tortoise’ coordinate

dz∗ =
√

s(z)dz/(1− z4), that is defined such that the horizon is at z∗ → ∞. The potential

is

V (z) = −(1 − z4)2

s(z)

(

A0(z) + A1(z)
σ′(z)

σ(z)
+

(

σ′(z)

σ(z)

)2

+

(

σ′(z)

σ(z)

)′
)

. (3.11)
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Figure 3: Schrödinger potential close to the horizon for different horizon embeddings, correspond-

ing to θ0(1) = 0.1, 0.5, 0.83, 0.9, 1.0, 1.2, 1.3 and 1.5. As θ0(1) increases, the potential develops a

negative-valued well.

Consider now solutions that fall into the horizon, which in the z∗ coordinate are f(z∗) =

exp(+iωz∗)ψ(z∗), multiply equation (3.10) by the conjugate solution ψ∗(z∗) and integrate

between the boundary and the horizon

∫ ∞

zb
∗

dz∗ (−ψ∗(z∗)ψ′′(z∗) − 2iω ψ∗(z∗)ψ′(z∗) + V (z∗)|ψ(z∗)|2 ) = 0 . (3.12)

The solution ψ(z∗) should vanish at the boundary and go to a constant at the horizon. The

second-derivative term can be integrated by parts giving a result proportional to |ψ′(z∗)|2.
Taking the imaginary part of this equation and integrating by parts we find the relation

2i Im ω

∫ ∞

zb
∗

dz∗ ψ∗(z∗)ψ′(z∗) = −ω∗|ψ(∞)|2 , (3.13)

that can be plugged back into the original equation

∫ ∞

zb
∗

dz∗ ( |ψ′(z∗)|2 + V (z∗) |ψ(z∗)|2 ) = −|ω|2 |ψ(∞)|2
Imω

. (3.14)

If the left hand side is positive, the imaginary part of the frequency must be negative. This

depends on the value of the potential. The potential (3.11) is non-negative between the

boundary z = 0 and the horizon z = 1 for the massless case θ0(z) = 0. For the massive

case we found numerically that the potential is non-negative up to values θ0(1) ∼ 0.83.

Above this value the potential starts developing a well close to the horizon, so in principle

there could be unstable modes of positive imaginary frequency.8 The numerical plots of

the potential are in figure 3.

Other qualitative properties of the frequencies can also be deduced from the shape of

the potential. The frequencies of brane fluctuations are given by the energy spectrum of

8We would like to thank R. Myers, A. Starinets and R. Thomson for pointing out this fact to us.
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the Schrödinger potential. For Minkowski embeddings, the potential is an infinite potential

well, so the spectrum is real and discrete. For black hole embeddings, the potential is

qualitatively the same close to the boundary, but it vanishes at the horizon. In both cases

the potential develops a negative well close to the horizon as the embedding approaches the

critical one separating Minkowski and black hole topologies. For Minkowski embeddings,

the well starts developing for z0 > 0.955. If the well is deep enough, we expect that negative-

energy bound states will appear. Bound states correspond to modes of tachyonic mass on

Minkowski slices [36] and they are probably signalling an instability of the brane. We have

checked the presence of tachyons up to z0 = 0.99 with negative results. At z0 = 0.999

we find that there is a single tachyon with ω ≃ 0.69 i, thus a true instability of the D-

brane embedding. For black hole embeddings, the instability appears between θ0(1) = 1.29

and θ0(1) = 1.295, where we find a mode with frequency ω ≃ 0.0014 i. Therefore, the first

order transition occurs before these instabilities are present. Near-critical embeddings have

been shown to be thermodynamically unstable [37], both instabilities seem to be related

because the appearance of tachyonic modes coincide with the onset of the thermodynamical

instability, in agreement with [38].

3.1 Massless case

We will consider first the simplest case of massless quarks, where the D7 embedding is

trivial θ0(z) = 0. The frequencies of the massless embedding can then be used as a starting

point for the search of quasinormal frequencies in the massive case.

It is more convenient now to change our coordinate to x = 1− z2. The equation takes

the simpler form

ϑ′′(x) +
1 + (1 − x)2

x(1 − x)(2 − x)
ϑ′(x) +

(

ω2

4x2(1 − x)(2 − x)2
+

3

4x(1 − x)2(2 − x)

)

ϑ(x) = 0 .

(3.15)

This equation has four regular singularities x = 0, 1, 2,∞, with exponents {iω/4,−iω/4},
{1/2, 3/2}, {w/4,−w/4}, {0, 0}. Therefore, it is a Heun equation and we can follow the

analysis described in [26] to compute the quasinormal frequencies.

Using the transformation

ϑ(x) = x−iω/4(x − 1)3/2(x − 2)−ω/4 y(x) , (3.16)

we can write the equation in the standard form for a Heun equation

y′′(x) +

(

γ

x
+

δ

x − 1
+

ǫ

x − 2

)

y′(x) +
αβx − Q

x(x − 1)(x − 2)
y(x) = 0 , (3.17)

with parameters

α = β =
3

2
− ω

4
(1 + i) , γ = 1 − i

ω

2
, δ = 2 , ǫ = 1 − ω

2
, (3.18)

and

Q =
9

4
− ω

4
(1 + 5i) − ω2

8
(2 − i) . (3.19)
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Quasinormal modes correspond to solutions of this equation defined in the interval [0, 1]

with boundary conditions y(0) = y(1) = 1, that select the appropriate normalizable and

ingoing behaviour of the solution.

We can find local solutions using the Frobenius method close to the singularities.

Usually, a solution with boundary condition y(0) = 1 will be a superposition of solutions

with exponents 1/2 and 3/2 close to the AdS boundary (x = 1). The boundary condition

y(1) = 1 can be satisfied only for a discrete set of frequencies ω. These values can be

computed imposing matching conditions at some intermediate point for the Frobenius

series although we will need a large number of terms and the convergence gets worse for

higher frequencies. There is an alternative method based on the improved convergence

of the solutions. Normal solutions are convergent for |x| < 1, but for some values of

the parameters the solutions can converge for |x| < 2. This happens when we have two

possible solutions for the recursion relations of the Frobenius series at the horizon, so we

can satisfy the requirements for quasinormal modes at the AdS boundary. The condition

of convergence boils down to a transcendental equation for the frequencies in the form of

a continued fraction (see [25, 26] for details).

The coefficients of the Frobenius series at x = 0 should satisfy the recursion relation

an+2 + An(ω) an+1 + Bn(ω) an = 0 , n ≥ 2 , (3.20)

where

An(ω) = −(n + 1)(2δ + ǫ + 3(n + γ)) + Q

2(n + 2)(n + 1 + γ)
, (3.21)

Bn(ω) =
(n + α)(n + β)

2(n + 2)(n + 1 + γ)
, (3.22)

and a0 = 1, a1 = Q/2γ. Then, using the recursive definition

rn =
an+1

an
= − Bn(ω)

An(ω) + rn+1
, (3.23)

the convergence condition is

r0 =
Q

2γ
. (3.24)

Using this formula, we can easily compute numerically the quasinormal frequencies with

high precision. In order to do that, we cut the fraction at some large value of n and use

the asymptotic value rn = 1/2 − (2 + ω)/4n. The frequencies for the first ten modes are

compiled in table 1. Higher modes k ≫ 1 seem to have the asymptotic behaviour

ωk ≃ 1.219 − 0.779i + (2k − 1)(1 − i) . (3.25)

3.2 Massive case

When we consider massive quarks, associated to a non-trivial D7 profile θ0(1) 6= 0, the

situation gets much more involved. First of all, we only know the embedding numerically,
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k Re(ωk) Im(ωk)

1 2.1988 −1.7595

2 4.2119 −3.7749

3 6.2155 −5.7773

4 8.2172 −7.7781

5 10.2181 −9.7785

6 12.2186 −11.7787

7 14.2180 −13.7788

8 16.2193 −15.7789

9 18.2195 −17.7790

10 20.2183 −19.7790

−20

−15

−10

−5

0

−20 −15 −10 −5 0 5 10 15 20

Im ωk

Re ωk

Lowest quasinormal modes

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

Table 1: Quasinormal frequencies for massless quarks using the convergence method (n = 200 for

k < 10 and n = 250 for k = 10).

and second, we know that it is not an analytic function, since its expansion close to AdS

boundary involves logarithmic terms. So we have to use mainly a numerical approach to

compute the quasinormal frequencies.

We use a shooting method to compute the frequencies. We approximate our numerical

embeddings by a power expansion in order to keep computation time bounded. This is our

main source of error, typically we trust our results up to the fourth decimal. Close to the

singular points we approximate the modes by a series expansion with the right behaviour,

as z3 at the AdS boundary (z = 0) and like (1 − z)−iω/4 at the horizon (z = 1). We use

then the series expansion at the horizon to give initial values for the numerical solution.

Close to the boundary, we try to match smoothly the numerical solution with the series

expansion at z = 0. The matching points between the numerical solution and the series

expansions are selected so that the error in the differential equation coming from the series

is less than 10−8, all values lying in the intervals [0.0375, 0.15] and [0.85, 0.9625].

The matching can be done only for discrete values of the frequency that we find ex-

ploring the complex ω plane. The frequencies that we have found for the massless case

are very useful to give a starting point for our search, and we also use them to check the

method for the massless case. Since the method becomes quite expensive in terms of CPU

time for higher modes, especially when we approach the critical embedding θ0(1) = π/2,

we have limited to the first three modes. The results can be found in tables 2, 3 and 4

and in figure 4. We see that the evolution drives the quasinormal frequencies from their

values in the massless embedding toward values closer to the real axis. Unfortunately, we

are not able to reach the limiting embedding numerically, so we cannot confirm what is the

endpoint of the evolution. It would be interesting to make an improved numerical analy-

sis or an analytic computation of quasinormal frequencies for near-limiting embeddings to

address this issue.

We have checked the results using a purely numerical approach, the relaxation method,

where the differential equation is converted into a finite difference equation. In this method

– 14 –
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Figure 4: Evolution of the first three quasinormal frequencies in the complex plane as we change

the embedding. All of them show the same behaviour when θ0 is increased: firstly they go to the

right to reach a returning point and start moving to the left decreasing their imaginary part.

θ0(1) Re(ω1) Im(ω1)

0.00 2.1988 −1.7595

0.10 2.1989 −1.7636

0.20 2.1999 −1.7765

0.25 2.2016 −1.7868

0.30 2.2051 −1.8001

0.40 2.2225 −1.8371

0.50 2.2712 −1.8855

0.60 2.3785 −1.9133

0.70 2.5153 −1.8546

0.80 2.6057 −1.7172

0.90 2.6299 −1.5454

1.00 2.5935 −1.3665

1.10 2.4972 −1.1867

1.20 2.3342 −1.0135

1.30 2.0866 −0.8488

1.40 1.7078 −0.6846

θ0(1) Re(ω2) Im(ω2)

0.00 4.2119 −3.7749

0.10 4.2090 −3.7808

0.20 4.2035 −3.8020

0.25 4.2057 −3.8218

0.30 4.2136 −3.8477

0.40 4.2818 −3.9122

0.50 4.4607 −3.9061

0.60 4.6172 −3.7287

0.70 4.6822 −3.4663

0.80 4.6585 −3.1643

0.90 4.5558 −2.8370

1.00 4.3784 −2.4866

1.10 4.1243 −2.1242

1.20 3.7945 −1.7345

1.30 3.3796 −1.3415

Table 2: First quasinormal frequencies for

different D7 embeddings.

Table 3: Second quasinormal frequencies for

different D7 embeddings.

we use the numerical values of the embedding, lowering significantly this source of error.

We find that the results for the first mode have a very good agreement, typically the

absolute relative error in the frequencies is of order 10−4. The details of the relaxation

method are discussed in the appendix.
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θ0(1) Re(ω3) Im(ω3)

0.00 6.2155 −5.7773

0.10 6.2064 −5.7813

0.20 6.1851 −5.8052

0.25 6.2067 −5.8341

0.30 6.2299 −5.8666

0.40 6.3867 −5.8924

0.50 6.6466 −5.7291

0.60 6.6925 −5.3760

0.70 6.6829 −4.9753

0.80 6.5846 −4.5276

0.90 6.4048 −4.0423

1.00 6.1417 −3.5153

1.10 5.7917 −2.9881

1.20 5.3629 −2.4019

1.30 4.7783 −1.8763

Table 4: Third quasinormal frequencies for different D7 embeddings.

mq/∆m(T ) 1 2 3 4

0.91784 0.9589 2.3411 3.4388 4.5087

1.27999 3.4357 5.9163 8.3647 10.7981

1.98432 5.5717 9.6391 13.6312 17.5994

3.99805 11.3081 19.5905 27.7128 35.7863

Table 5: First meson masses in temperature units for different quark masses in Minkowski embed-

dings.

4. Meson masses and lifetimes

We have identified small fluctuations of D7-probe branes with the low energy spectrum of

mesons. In the zero temperature case (T = 0), the spectrum of mesons is given by regular

and normalizable modes on the brane. The bare mass of the quarks mq is identified with

the asymptotic properties of the embedding, as in (2.8). If the mass is finite, then the

embedding ends at a finite value of the radial coordinate, providing an IR cutoff for the

modes on the brane. The spectrum is discrete with a mass gap M ∼ mq/
√

λ and grows

linearly [9, 21]. If the bare mass is zero, then the induced metric on the brane is conformal

AdS5 × S3 and the spectrum becomes continuous.

For Minkowski embeddings, the spectrum will be similar to the zero temperature case

for mq/∆m(T ) ≫ 1. We show the first modes of the meson spectrum for several embeddings

in table 5 and figure 5, notice that the mass gap grows linearly with the quark mass for

embeddings with mq/∆m(T ) > 1.

Below the critical mass mq ≃ 0.92∆m(T ), there can be a first or a second order
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Figure 5: First modes of the meson spectrum for Minkowski embeddings ending at z0 =

0.25, 0.5, 0.75, 0.99. We observe that the spectrum grows linearly and the mass gap increases

with the distance of the embedding to the horizon z+ = 1.

transition to a black hole embedding [12, 13, 15 – 17, 39, 40]. Free energy arguments show

that the branch of black hole embeddings reached by the first order transition will dominate.

However, the second order transition is interesting because its properties are similar to type

II critical collapse of black holes and black hole/black string merger transitions [16, 40]. In

black hole embeddings, the theory is in a deconfined phase and the spectrum of mesons is

continuous. From the geometric point of view, this is due to the presence of a horizon.

Let us consider the results of the previous section. The mass and the width of quasinor-

mal modes are roughly proportional, and proportional to the temperature (see figure 6). As

we increase the quark mass there is some change, close to the critical value where the two

branches of black hole embeddings merge. The width decreases appreciably, specially for

higher modes, while the mass does not change as much. In any case, before the first order

phase transition the mass and the width are of the same order, which makes a quasiparticle

interpretation unlikely.

The melting is therefore characterized by the temperature, showing little dependence

on the quark mass after the transition. This implies that mesons made of light quarks will

start melting at lower temperatures but will have longer lifetimes just after the transition.

Considering mesons made of quarks of fixed mass, heavier mesons with the same quantum

numbers (in our case, zero spin mesons associated to the scalar operator qq) will initially

decay through higher quasinormal modes, so they will lose energy faster. Then, a heavy

meson that goes through a plasma region will usually emerge as a lower mass state. If the

meson does not emerge, then the decay is dominated by the lowest quasinormal mode at

large times and becomes universal, it is no longer possible to distinguish the original state.

This means that any scattering process will in principle increase the energy and entropy of

the plasma, as we expect from a dissipative medium.
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Figure 6: (Left) Quasinormal masses in temperature units for the first three modes as a function

of the bare quark masses, and (right) quasinormal widths in temperature units for the first three

modes as a function of the bare quark masses.

5. Conclusions and outlook

We have proposed a holographic picture (of the late stages) of the melting process of low

spin mesons in the quark-gluon plasma. The important ingredient are D7-brane embed-

dings in AdS black hole backgrounds that do reach down to the horizon. The induced

metric on the world volume of these D7-branes is itself a black hole and therefore it makes

sense to compute the quasinormal modes of the brane fluctuations. These modes describe

the dissipation of the energy of mesonic excitations by the plasma, in particular the melting

of mesons. One important point is that this process of melting in the holographic plasma

is only available for mesons built out of quarks with masses up to mq = 0.92
√

λT/2,

where T is the plasma temperature and λ is the ’t Hooft coupling. Heavier quarks are

represented by D7-branes with no horizon on their world volume and therefore have stable

meson excitations.

The melting of quarkonium states is of high importance in the physics of the quark-

gluon plasma. It has long been regarded to be one of the cleanest signatures of plasma for-

mation. In particular, quarkonium states such as the J/ψ meson are expected to melt in the

quark-gluon plasma and therefore the abundance of these particles measured in processes

where quark-gluon plasma formation takes place should drop significantly if compared to

nuclear collisions without plasma formation.

Although the model we have considered here is quite far from QCD it is still interesting

to have a look to this problem from our perspective of holographic meson melting. We

found that the melting process takes place only for quarkonium states built out of quarks

with masses of at most the order of the temperature of the plasma. The mass of the
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charm quark is mc ≈ 1.4 GeV and the RHIC temperatures is TRHIC / 300 MeV. AdS

predicts critical mass to temperature ratios of 1 − 2 if we use the recent estimates on how

to relate 5.5 < λ < 6π to QCD [41]. It is quite interesting that very recently meson

melting has been considered in a real time approach in Hard Thermal Loop resummed

perturbation theory [42]. There the authors found an imaginary part in the static quark

anti-quark potential giving rise to a decay width and that this decay width can be ignored

for quarks heavier that mq = 12πT/g2. One is tempted to speculate that this is the weak

coupling QCD analog of the holographic value mq = 0.92
√

λT/2 and that there exists an

interpolating function f(λ) such that mq = f(λ)T , where f(λ) ≈
√

λ at strong coupling

and f(λ) ≈ 1/λ at weak coupling.

The biggest drawback of the AdS-model is that the background corresponds to plasmas

made up only of particles in the adjoint representation. Although in a background with

dynamical quarks included one still expects heavy quarks being reasonably well modelled by

D-brane embeddings the presence of fundamental quarks in the deconfined plasma might

change the dissociation rates even for heavy quarks in a drastic way. In any case, the

quasinormal modes on D-branes embedded in gravity duals of gauge theories offer a unique

way of studying quarkonium dissociation in a holographic way.

It is of high interest to apply our approach to meson melting also to other models, such

as models with non-Abelian chiral symmetries [19] or the phenomenological holographic

models of QCD developed in [43]. In view of the above mentioned problem of J/ψ suppres-

sion it would be of extreme interest to have a phenomenological holographic QCD model

that includes heavy flavours such as the charm quark.

In this paper we have only considered modes with vanishing momentum on the S3 as

well as on R
3. Especially, the dependence of the quasinormal modes on momentum relative

to the rest frame of the plasma should be quite interesting. Furthermore one could study

the modes of the other fields on the D7-brane world volume, such as the vector fields whose

excitations correspond to vector mesons. We also have found evidence that quasinormal

modes show an interesting behaviour when the system goes through the second order phase

transition, allowing a continuous connection of both phases. We plan to come back to these

questions in future publications [44].
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A. Relaxation method

It is common practice to use the shooting method to solve two-point boundary value differ-

ential equations. Indeed, we have used this method to compute the first three quasinormal

modes of the massive embedding for a variety of bare quark masses at the horizon. How-

ever, in order to check at least those results for the first mode, we follow the spirit of

“always shoot first and only then relax”. The reference for this appendix is Numerical

Recipes [45].

The idea behind this method consists in replacing the differential equations by a finite-

difference system (FDE) on a grid. One will then modify the value of the dependent

variables at each point relaxing to the configuration which solves the differential equation.

In our case, we will convert our second order complex ODE into a set of four first order

equations, with the real and imaginary parts separated, and then into an FDE.

In general one has the set of N ODE’s

dyi(x)

dx
= gi(x, y1, . . . , yN ;λ) , (A.1)

where each dependent variable depends on the others and itself, on the independent vari-

able x, and possibly on additional parameters, like λ above. In our case this (complex)

parameter takes the role of the quasinormal frequency. Those extra parameters can be

embedded in the problem giving equations for them too







yN+1 ≡ λ ,

dyN+1

dx
= 0 , since it is constant .

(A.2)

The solution to the problem involves N × M values, for the N dependent variables in a

grid of M points. Concerning boundary conditions, for the system to be determined one

needs N of them, supplying it with extra boundary conditions for the extra parameters if

present.

The system is discretized as usual

x → 1

2
(xk + xk−1) , y → 1

2
(yk + yk−1) , (A.3)

for points in the bulk (not in the boundaries). One may arrange the whole set of yi’s in a

column vector yk = (y1, . . . , yN , yN+1)k
T , where the subscript k refers to evaluation at the

point xk, k = 1, . . . ,M. With this matrix notation, the system (A.1) is rewritten as

0 = Ek ≡ yk − yk−1 − (xk − xk−1)gk(xk, xk−1,yk,yk−1) , k = 2, . . . ,M , (A.4)

where the Ek are the aforementioned FDE’s. These are the equations that we need to

fulfil. Notice there are N equations at M −1 points, so the remaining N equations are just

given by the boundary conditions. We will set n1 of them on the left at x1, called E1, and

the rest n2 = N − n1 at xM , called EM+1 (no typo in the subscript!).

– 20 –
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Now one is set with all the necessary material. Suppose one has a good ansatz that

nearly solves the FDE’s Ek. By shifting each solution yk → yk+∆yk and Taylor expanding

in the shift, one obtains a relation

0 = Ek(y + ∆y) ≃ Ek(yk,yk−1) +

N
∑

n=1

∂Ek

∂yn,k−1

∆yn,k−1 +

N
∑

n=1

∂Ek

∂yn,k
∆yn,k , (A.5)

⇒ − Ej,k =
N

∑

n=1

(

Sj,n ∆yn,k−1

)

+
2N
∑

n=N+1

(

Sj,n ∆yn−N,k

)

, (A.6)

which by inverting it allows to find the ∆yk that improve the solution. This is done by

merging the two differentials

Sj,n =
∂Ej,k

∂yn,k−1

, Sj,n+N =
∂Ej,k

∂yn,k
, n = 1, . . . , N , (A.7)

in a N × 2N matrix, for each bulk grid position xk. For the boundaries the expressions

follow equally

−Ej,1 =
N

∑

n=1

Sj,n ∆yn,1 =
N

∑

n=1

∂Ej,1

∂yn,1
∆yn,1 , j2 + 1, . . . , N , (A.8)

−Ej,M+1 =

N
∑

n=1

Sj,n ∆yn,M =

N
∑

n=1

∂Ej,M+1

∂yn,M
∆yn,M , j = 1, . . . , n2 , (A.9)

where n runs in both from 1 to N . The whole (NM × NM) S matrix possess a block

diagonal structure. This allows for a somewhat fast Gaussian elimination, since off-diagonal

entries are already zero, and forms the basis of an iterative process which can be put to run

until one reaches a desired accuracy in the result. Concerning this last point, we computed

the error of our solution as

err =
1

MN

M
∑

k=1

N
∑

j=1

∣

∣

∣

∣

∆y[j][k]

scalevar[j]

∣

∣

∣

∣

< conv , (A.10)

where scalevar[j] is an associated scale for each of the dependent variables (e.g. the value

at the midpoint or so). The idea is that when that averaged value of the shift to get a

better solution is smaller than conv, we accept the former values we had as the actual

solution. In our computations we set conv = 10−6.
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Erratum

The correct address of the Instituto de F́ısica Teórica is:

Instituto de F́ısica Teórica UAM-CSIC, Facultad de Ciencias C-XVI,

Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
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